Adsorption of Aniline Toxic Gas on a BeO Nanotube
Authors
Abstract:
Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward aniline (C6H5 NH2) molecule by using Density Functional Theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of aniline on the pristine nanotubes is about -19.06kcal/mol. However, when nanotube has been doped by P and S atoms, the adsorption energy of aniline molecule was decreased. The calculation showed that when the nanotube is doped by S, The adsorption energy is about -8.61kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. As a conclusion, Beryllium oxide nanotube is a suitable adsorbent for aniline and can be used in different processes of aniline. It seems that nanotube (BeONT) is an appropriate semiconductor after being doped. The doped BeONT in the presence of aniline generates an electrical signal directly and therefore can be potentially used for aniline sensors.
similar resources
ADSORPTION OF PYRIDINE BY USING BeO NANOTUBE: A DFT STUDY
Abstract: Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C5H5N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31(d) level, and it was found that the adsorption energy (Ead) of pyridine on the pristine nanotubes is a bout -73.29kcal/mol. But when nanotubes has been doped with S and P atomes , t...
full textAniline adsorption on the surface of a BN nanotube: A Computational study
Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward aniline (C6H5NH2) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of aniline on the pristine nanotubes is a bout -19.03kcal/mol. But when nanotube has been doped with Si and Al ato...
full textadsorption of pyridine by using beo nanotube: a dft study
abstract: electrical sensitivity of a beryllium oxide nanotube (beont) was examined toward (c5h5n) molecule by using density functional theory (dft) calculations at the b3lyp/6-31(d) level, and it was found that the adsorption energy (ead) of pyridine on the pristine nanotubes is a bout -73.29kcal/mol. but when nanotubes has been doped with s and p atomes , the adsorption energy changed . cal...
full textWater adsorption and dissociation on BeO (001) and (100) surfaces
Plateaus in water adsorption isotherms on hydroxylated BeO surfaces suggest significant differences between the hydroxylated (100) and (001) surface structures and reactivities. Density functional theory structures and energies clarify these differences. Using relaxed surface energies, a Wulff construction yields a prism crystal shape exposing long (100) sides and much smaller (001) faces. This...
full textPyrrole detection by BeO nanotube: DFT studies
Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C4H5N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31(d) level, and it was found that the adsorption energy (Ead) of pyrrole on the pristine nanotubes is a bout -48.58kcal/mol. But when nanotubes has been doped with S and P atomes , the adsorptio...
full textGas molecule adsorption in carbon nanotubes and nanotube bundles
We studied various gas molecules (NO2, O2, NH3, N2, CO2, CH4, H2O, H2, Ar) on single-walled carbon nanotubes (SWNTs) and bundles using first principles methods. The equilibrium position, adsorption energy, charge transfer, and electronic band structures are obtained for different kinds of SWNTs. Most molecules adsorb weakly on SWNTs and can be either charge donors or acceptors to the nanotubes....
full textMy Resources
Journal title
volume 38 issue 1
pages 43- 48
publication date 2019-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023